17,089 research outputs found

    A Measure of Space for Computing over the Reals

    Full text link
    We propose a new complexity measure of space for the BSS model of computation. We define LOGSPACE\_W and PSPACE\_W complexity classes over the reals. We prove that LOGSPACE\_W is included in NC^2\_R and in P\_W, i.e. is small enough for being relevant. We prove that the Real Circuit Decision Problem is P\_R-complete under LOGSPACE\_W reductions, i.e. that LOGSPACE\_W is large enough for containing natural algorithms. We also prove that PSPACE\_W is included in PAR\_R

    Towards an analytical theory for charged hard spheres

    Full text link
    Ion mixtures require an exclusion core to avoid collapse. The Debye Hueckel theory, where ions are point charges, is accurate only in the limit of infinite dilution. The MSA is the embedding of hard cores into DH, is valid for higher densities. In the MSA the properties of any ionic mixture can be represented by a single screening parameter Γ\Gamma. For equal ionic size restricted model is obtained from the Debye parameter κ\kappa. This one parameter representation (BIMSA) is valid for complex and associating systems, such as the general n-polyelectrolytes. The BIMSA is the only theory that satisfies the infinite dilution limit of the DH theory for any chain length. The contact pair distribution function of hard ions mixture is a functional of Γ\Gamma and a small mean field parameter. This yields good agreement with the Monte Carlo (Bresme et al. Phys. Rev. E {\textbf 51} 289 (1995)) .Comment: 6 pages, 1 figur

    Do Wilson Fermions Induce an Adjoint Gauge Coupling?

    Full text link
    Expansions of the Wilson determinant in lattice QCD with quarks produce gauge action terms which shift the coupling constant of the fundamental representation plaquette action and induce an adjoint representation plaquette action. We study the magnitude of these induced couplings with two flavors of Wilson fermions. We utilize a microcanonical demon method, which allows us to measure the induced couplings directly from gauge configurations generated by full fermionic simulations.Comment: 3 pages postscript, proceedings for LATTICE '9

    Real time plasma equilibrium reconstruction in a Tokamak

    Get PDF
    The problem of equilibrium of a plasma in a Tokamak is a free boundary problemdescribed by the Grad-Shafranov equation in axisymmetric configurations. The right hand side of this equation is a non linear source, which represents the toroidal component of the plasma current density. This paper deals with the real time identification of this non linear source from experimental measurements. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation

    Development of a mass spectrometer design Final report, Jun. 1, 1964 - Dec. 31, 1964

    Get PDF
    Cold cathode ion source mated to quadrupole mass spectrometer for use as residual gas analyze

    Golden Ratio Prediction for Solar Neutrino Mixing

    Full text link
    It has recently been speculated that the solar neutrino mixing angle is connected to the golden ratio phi. Two such proposals have been made, cot theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group D_{10}. This symmetry is a natural candidate because the angle in the expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the exterior angle of a decagon and D_{10} is its rotational symmetry group. We also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio

    Scaling in Complex Systems: Analytical Theory of Charged Pores

    Full text link
    In this paper we find an analytical solution of the equilibrium ion distribution for a toroidal model of a ionic channel, using the Perfect Screening Theorem (PST). The ions are charged hard spheres, and are treated using a variational Mean Spherical Approximation (VMSA) . Understanding ion channels is still a very open problem, because of the many exquisite tuning details of real life channels. It is clear that the electric field plays a major role in the channel behaviour, and for that reason there has been a lot of work on simple models that are able to provide workable theories. Recently a number of interesting papers have appeared that discuss models in which the effect of the geometry, excluded volume and non-linear behaviour is considered. We present here a 3D model of ionic channels which consists of a charged, deformable torus with a circular or elliptical cross section, which can be flat or vertical (close to a cylinder). Extensive comparisons to MC simulations were performed. The new solution opens new possibilities, such as studying flexible pores, and water phase transformations inside the pores using an approach similar to that used on flat crystal surfaces
    corecore